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Abstrae~Dependent scattering/independent scattering regimes are investigated in two different particle 
systems using a discrete dipole approximation for modeling the interaction of electromagnetic waves with 
the matter. In the first case, absorption and scattering by two small Rayleigh spheres, separated at an 
arbitrary distance, are discussed and compared against the Lorenz-Mie theory predictions for single 
spheres. After that, small agglomerates of up to 12 spheres are investigated. Results show that the mutual 
interaction c f two spheres does not affect absorption when the ratio of their distance to the radius, c = d/a, 
is greater than 3. Contrary, an analogous criterion for independent scattering depends on the individual 
sphere size parameter, xs, such that it is valid only if c >1 2/x~. It is shown that an agglomerate formed of 
N individual spheres can be approximated by an effective sphere if xo ~< 0.2. For xo ~ 2, agglomerates scatter 
similar to N independent particles. These limits bracket the true radiative properties of the agglomerates for 
0.2 ~< xo ~< 2, where dependent effects cannot be neglected. Additionally, an experimental methodology is 
suggested to qualitatively identify the process of agglomeration of a number of individual particles even 

when changes in the number density of particles are unknown. 

1. INTRODUCTION 

In many high temperature systems, radiation heat 
transfer is the dominant  mode of  energy transfer [1, 
2]. Radiat ion is also important  in close-packed and 
insulation systems, where it is usually the only mode 
of  heat transfer [3]. Accurate solutions of  the thermal 
performance of  these processes are strongly linked to 
the solution of  the radiative transfer equation, which 
requires radiative properties of  the medium as an 
input. These are the absorption and scattering 
coefficients, K and a, which are proport ional  to par- 
ticles' number density, V,, and the corresponding 
cross sections C abs or C s~a, and the scattering phase 
function, ~b(0) [1-3]. Absorption and scattering 
efficiencies of  spherical particles are defined as cross 
sections normalized by the geometrical cross section, 
ga 2, 

C 
O - . (1) ga 2 

Determination of  the radiative behavior of  the indi- 
vidual spherical particles is a relatively straight- 
forward process [4, 5]. For  particle clouds, the total 

tAuthor to whom correspondence should be addressed. 

radiative properties can be obtained by using a sum- 
mation procedure based on the individual particle 
properties. This approach, called the ' independent 
scattering' approximation, is acceptable provided that 
the distances between particles are large compared to 
the particle dimensions. 

If  light traverses a perfectly homogeneous medium 
it is not  scattered. Only the inhomogeneities cause 
scattering. Any material medium has inhomogeneities 
as it consists of  molecules, each of  which acts as a 
scattering center, but it depends on the arrangement 
of  these molecules whether the scattering will be sig- 
nificant. In a perfect crystal at absolute zero tempera- 
ture, the waves scattered by each molecule interfere in 
such way as to cause no scattering at all, but just a 
change in the overall velocity of  propagation. For  
liquids, gases and non-ideal solutions, the thermal 
movements  of  the constituent members of  the scat- 
tering system cause a real scattering. However,  ther- 
mal movements are not  independent and it cannot be 
expected that the total intensity of  scattered light will 
be a mere summation of  the intensities from the indi- 
vidual particles [6]. Some destructive interference will 
occur and result in a decrease in intensity of  scattered 
light from that expected for independent particles. 
The assumption of  independent scattering implies that 
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NOMENCLATURE 

a radius of each sphere [nm] ? 
c dimensionless distance between two 

particles, d/a ~ ]  0 
d distance between two particles [nm] ~c 
f function defined by equation (8) 2 
g function defined by equation (6) a 
k imaginary part of refractive index q~ 
rh complex index of refraction, n + ik 
n real part of refractive index 
N number of spheres in an agglomerate ~o 
Ndip number of dipoles considered in each A 

sphere 
Q efficiencies, see equation (1) [--] 
x size parameter, 2zm/2 [--]. 

Greek symbols 
orientation angle for two spheres, see 
Fig. 2 

fl extinction coefficient (=  a + ~c) [m t] 

coefficient defined by equation (2 l) 
(= ~/~) [ ] 
scattering angle, see Fig. 2 
absorption coefficient [m 1] 
wavelength [nm] 
scattering coefficient [m ~] 
scattering phase function 
orientational angle of scattering plane ; 
see Fig. 2 
single scattering albedo, a / ( a +  ~c) 
fractional accuracy. 

Subscripts and superscripts 
abs absorption 
agg agglomerate 
e effective 
ind individual 
s single sphere 
sca scattering 

normalized quantity. 

there is no systematic relation between the phases of 
waves scattered by different particles. Such assump- 
tion can be made if particles are sufficiently far from 
each other. Early estimates have shown that a mutual 
distance of three times the radius is sufficient for the 
assumption of independent scattering [4]. More 
recently, Tien and his co-workers have modified this 
approximation to include the wavelength dependence 
(see ref. [3] for the review). It was also shown that the 
absorption and scattering cross sections of an agglom- 
erate are different than the corresponding cross- 
sections of a primary particle multiplied by the 
total number of particles in the cluster [7-9]. 

Dependent/independent scattering regimes have 
been studied by different researchers (see refs. [7- 
15]), including the most basic system consisting of 
two approaching spheres. However, these studies were 
either limited to a very small imaginary part of the 
refractive index [11, 12], only to conducting spheres 
[13] or Rayleigh scattering [14], or they were con- 
centrated on a particular effect (e. g. polarization [ 15]). 

In the first part of this work, we investigate the 
effects of dependent scattering in a system consisting 
of two spheres at an arbitrary distance with the index 
of refraction typical for that of soot particles. Our 
objectives here are: (1) to check the validity of the 
criterion for independent scattering ; (2) to investigate 
its possible dependence on the size and the arrange- 
ment of particles; and (3) to estimate errors intro- 
duced by the approximation of independent particles. 

The second part deals with closely packed systems 
of up to 12 spheres where they are either aligned in 
straight chains or form compact agglomerates. We 
investigate changes in radiative properties of particles 
as they agglomerate and suggest methods to identify 

the process of agglomeration and character of the 
formed agglomerates. Although there are similar stud- 
ies in the literature for agglomerates (see refs. [8, 9]), 
all of them are based on some approximation of the 
monomers and the EM-wave incident on them. In 
other words, the dependent effects were not easy to 
separate from the uncertainties associated with the 
model itself. 

The approach we used here is the discrete dipole 
approximation, proposed by Purcell and Pennypacker 
[16], which is currently one of the most general and 
accurate approaches available for determining the 
agglomerate properties. The solution scheme we 
employed is that of Draine [17]. The results were gen- 
erated using a fixed complex index of refraction value 
of r~ = 1.75+0.75i, which is similar to that of soot 
particles generated during the combustion of hydro- 
carbon fuels. It is important to realize that a more 
complete study would require a detailed consideration 
of a larger range of optical properties. Since we focus 
only on the dependent scattering effects in soot 
agglomerates, use of a single r~ value is sufficient and 
is not going to affect the conclusions drawn here. 

2. PROPERTIES OF PARTICLES AND 
AGGLOMERATES 

2.1. Models for single spheres 
Exact solutions for the absorption and scattering 

cross-sections and scattering phase function may be 
determined analytically for simple geometric shapes, 
such as spheres, by solving the Maxwell equations 
with boundary conditions corresponding to an infinite 
plane wave incident on the object. The solution results 
in an expression involving an infinite series of Ricatti-  
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Bessel functions [:5] and it is known as the Lorenz- 
Mie theory. For  uniform, homogeneous spheres, the 
solutions may be expressed as a function of the size 
parameter x and the relative refractive index 
rh = n + ki with respect to the surrounding medium. 
The size parameter is defined as 

27~a 
x = 2 -  (2) 

where a is the radius of the sphere and 2 is the wave- 
length. 

For  large values of x (for example x > 200), the 
Lorenz-Mie solution converges very slowly. The prin- 
ciples of geometrical optics can be utilized in obtaining 
the cross-sections and scattering phase function of 
large spheres (or arbitrary shaped objects). If  x is 
much smaller than unity, the Rayleigh scattering 
approximation yields the following expressions for the 
absorption and scattering efficiencies : 

2 4nk 
Qab~ = x (3) 

(n 2 - k  2 + 2 )  2 + 4 n 2 k :  

8 __if/2--1 2X4 ' 
Qs,:a = ~ m 2 + l  (4) 

For an agglomerate of arbitrary shape and structure 
comprised of N spherical particles, absorption and 
scattering cross-sections can be obtained by for- 
mulating the interaction of EM-wave with the matter. 
The discrete dipole (or coupled dipole) approximation 
is such a semi-microscopic analysis applicable for the 
solution of these t~pe of problems [16, 17]. 

2.2. Discrete dipole approximation for ayglomerates 
Discrete dipole approximation (DDA) has proven 

to be a very flexible and general technique for cal- 
culating the optical properties of particles of arbitrary 
shapes [17]. The DDA replaces the solid particle with 
an array of N point dipoles. The spacing between the 
dipoles is small compared to wavelength. Each dipole 
has an oscillating polarization in response to both the 
incident plane waw~ and the electric field, due to all of 
the other dipoles in the array. A self-consistent solu- 
tion for the dipole l:,olarizations can be obtained as the 
solution to a set of coupled, complex, linear equations. 

The DDA is especially suited to scattering char- 
acterized by small values of the size parameter x, and 
shares many of the conceptual features of the Rayleigh 
approximation [17-19]. However, it is not without 
limitations. The solution of equations requires the 
inversion of a matrix with considerably large dimen- 
sions. Some of the other algorithms used for the same 
purpose fail for strongly absorptive refractive indices 
[17]. The effect of Lhe surface granularity affects the 
accuracy of the calculations and sets the lower limit 
on the number of used discrete dipoles. Draine [17], 
set up a criterion for minimum number of dipoles as 

4n 3 ~ /0  1"~ 3 
N >~ ~ - x  I r n l ~ )  (5) 

where A is desired fractional accuracy (or relative 
error normalized to unity ; i.e. 1% = 0.01). For  exam- 
ple, with Ir~l = 1.75+0.75i used in this work and 
x = 2, desired accuracy of 0.1 (10%) is achieved with 
N > 64. It should be noted that this criterion is necess- 
ary but not sufficient if Ir~l is large enough, because 
of magnetic dipole absorption. However, for fr~ I used 
in this work, this effect is negligibly small. For a 
detailed discussion of the application of equation (5), 
the reader is referred to Draine's work [17]. 

Given its flexibility, the DDA can be used effectively 
to investigate radiative properties of arbitrarily 
shaped particles and agglomerates. The recent reviews 
of this approach were given in refs. [17-21] ; therefore, 
there is no need to discuss the details here. 

3. DEPENDENT/INDEPENDENT SCATTERING 
LIMITS 

Although DDA can simulate arbitrary agglom- 
erates with good accuracy, it is computationally 
expensive and cannot be readily expanded to large 
systems. Because of this, it is preferable to follow a 
simpler methodology to predict the radiative proper- 
ties of agglomerates and irregularly shaped particles. 
For  example, if the properties of agglomerates can be 
correlated in terms of those of smooth, homogeneous 
spheres, then the Lorenz-Mie theory could be 
employed to calculate the necessary properties. Indeed 
this has been the general approach taken for most 
practical systems (see refs. [l, 8, 9] for the reviews). It 
is important to note here that, with the availability of 
better computer hardware and algorithms, it will be 
easier to perform rigorous calculations based on 
agglomerates. However, there is a need to simplify 
these calculations as much as possible for use in com- 
plex systems, such as in furnace design. Then, one of 
the most important questions is, 'Under what con- 
ditions can an agglomerate be simulated as a homo- 
geneous sphere?' Another question to be answered is 
'When can a N-particle agglomerate be represented 
by N independent particles?' The answers to these 
questions will reveal the border between dependent 
and independent scattering regimes. 

In general, absorption-scattering cross-sections of 
a N-particle agglomerate can be expressed in terms of 
equivalent sphere properties as 

C N = rca2Q1 (xo)g(xe, N) (6) 

where ae, xe and Q1 (xe) are radius, size parameter and 
absorption or scattering efficiency, respectively, of a 
sphere with the same volume as the N particle cluster. 
That is, 

ae = asN '/3 (7) 

where as is the radius of the primary spheres. Effects 
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of the shape, structure and mutual interaction between 
the monomers are contained in the function g(x¢, N). 
Parameters a~ and x, do not change during the process 
of agglomeration of N particles, which is fully 
described by the changes of g(x¢, N). If C x is the 
true cross-section of an agglomerate, the g-function 
represents the fractional error introduced by the 
assumption of a single effective particle, which is 
described by an equivalent sphere radius of a¢. A simi- 
lar approach was also suggested by Ku and Shim [8] 
for agglomerates, although they did not elaborate on 
the functional dependencies. 

I fg  is equal to 1 for both absorption and scattering 
cross-sections, then the effective sphere is a good 
model for the agglomerate. Such radiative behavior 
can also be considered as the asymptotic limit for the 
dependent scattering regime. This limit is achieved if 
the wavelength of radiation is large with respect to 
the size of the monomers of the agglomerate or the 
granularity of the surface (as opposed to a smooth, 
homogeneous sphere) and, hence, structural details 
cannot be resolved. As the size of individual spheres 
(monomers) increases, we expect that a single effective 
sphere model begins to fail and the g-functions deviate 
from unity. We can determine the g functions by divid- 
ing the actual cross-section of the agglomerate, 
calculated, for example, using the DDA, with that of 
the effective sphere obtained from the Lorenz-Mie 
theory. 

An equivalent expression for the cross section of 
the agglomerated particle can be given using the single 
sphere properties. Analogous to equation (6), we can 
write : 

C N = N~a2, Q, (x=)f(xs, N). (8) 

Here a, and x= are the radius and size parameter of 
single spheres which make the agglomerate. If the 
particles are scattering completely independently, then 
the f-functions have the asymptotic limits of unity. 
Such limit is expected only if the distance between the 
particles is larger than the wavelength of the incident 
radiation. As the particles approach and begin to 
interact with each other, as during the agglomeration 
process,f-functions deviate from this asymptotic limit 
of 1. Similar to g functions,f functions can be obtained 
from comparison of DDA and the Lorenz Mie theory 
results. Note that g(x~, N) a n d f ( x ,  N) correspond to 
either g=b~ and labs or to gsca and f=~a, and are related 
to each other as 

Ql(x, = xeN -I/3) 
g(x~, N) = 

Q,(x~) 

x f ( x = = x e N  I/3,N) xN1/3. (9) 

If both x= and x~ << 1, deviations of g(x~, N) when 
the effective sphere model is not applicable and 
f ( x ,  N) when interaction between the individual 
spheres is not negligible, can be predicted theo- 
retically. At this limit, using the Rayleigh approxi- 
mation [equations (3) and (4)], we can write 

I Q1 (x~)lab~ as N ~.3 (10) 

[ Q , ( x , ) T c a = ( a , y =  N 4.3. ( I I )  

If all N particles of an agglomerate interact with the 
incoming radiation independently of each other, then 

C x = N~a~Q~ (x=) (12) 

and from equation (8) 

fabs(x=,N) = 1 (13) 

f'Ca(x,, N) = 1. (14) 

Using equations (9)-(11), we obtain for the inde- 
pendent scattering regime of Rayleigh particles (both 
individual and effective spheres) 

gab'(xe, N) = l (15) 

1 
. . . .  x (16) g ( . ¢ , N ) = ~ .  

Contrarily, if all N particles of an agglomerate are 
assumed to merge together and act as a single homo- 
geneous spherical particle with radius a¢, we can write 
from equation (6) 

gab~(x~,N) = 1 07) 

g'¢a(xe, N) = 1. (18) 

Following equation (9)-(11) we find for Rayleigh 
particles 

f=b'(x=, N) = 1 (19) 

f,ca (x,, N) = N. (20) 

Note that these theoretical results are for small x~ 
and x= values. It is obvious that scattering properties 
are more suitable than the absorption properties to 
investigate dependent effects and agglomeration. 

The requirement for small Rayleigh size particles 
(i.e. x ~< 1.0) is easily met for individual soot particles, 
whose sizes are in the order of 20-50 nm, if the wave- 
length of interest is at the visible or infrared spectrum. 
For  agglomerates, however, Rayleigh approximation 
needs to be replaced with the Lorenz-Mie calcu- 
lations, which requires the modification of equations 
(10) and (11). For  this case, equations (13), (14) and 
(17), (18) are still valid by definition. The new forms 
of f and g function limits given by equations (15), (16) 
and (19), (20) depend on the size parameter. These 
relations are calculated from the Lorenz-Mie theory 
and depicted in Fig. 1. The left panels of this figure 
show the f-functions for effective sphere approxi- 
mation (a dependent scattering asymptote, as dis- 
cussed before). These functional variations should 
replace the limits given by equations (19) and (20). 
The right panels of Fig. 1 depict gabs and gSCa, if the 
particles in N-particle agglomerate scatter inde- 
pendently and replace equations (15) and (16). These 
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Fig. 1. Behavior of f  and g functions (see text) obtained from the Lorenz-Mie theory for rh = 1.75 + 0.75i. 
Number of single spheres that form an equivalent sphere, N, is 2 (solid line), 5 (dashed line) and 10 (do~ 

dashed line). 

results indicate that absorption and scattering cross- 
sections can be represented with the Rayleigh approxi- 
mat ion (within 10%), i.e. with equations (15), (16), 
(19) and (20), as tong as xs ~< 0.3 or xo ~< 1. 

4. RESULTS A N D  DISCUSSIONS 

In order to obtain the agglomerate properties, the 
discrete dipole approximation algorithm (called 
DDSCAT) developed by Draine [17] was used. All 
runs were performed on an IBM 3090-600J computer. 
Initial computer simulations were made for a single 
sphere in order to obtain the minimal number  of 
dipoles, Nd~p, neecLed to get a good agreement with the 
results from the Lorenz-Mie theory. For N d i  p = 123 
and x < 2, results from D D A  were within 10% from 
the exact values obtained by the Lorenz-Mie theory, 
in agreement with equation (5). Analogous com- 
putations with N,j~p = 515 did not show a significant 
decrease of error for x ~< 2. These observations are in 
agreement with those reported by Draine [17] and, 
therefore, there is no need to further discuss them 
here. 

4.1. Two spheres 
In this section, we will investigate the radiative 

properties of two spheres separated by a normalized 
distance of c = d/a, where d is the distance between 
the spheres (surface to surface) and a is their radius. 
It is assumed that each sphere consists of 123 dipoles, 
and c is varied from 0 to 100. Complex index of refrac- 
tion was assumed constant  and taken as r~ = 

1.75+0.75i. This is a value typical for soot particles 
produced during combustion of hydrocarbon fuels [1, 
8]. The angle between the line connecting the spheres 
and the direction of incident light, ~, was taken as 
either 0 ° (back to back spheres, with respect to the 
Poynting vector) and 90 ° (side by side spheres; see 
Fig. 2). Two initial polarizations were chosen for 
ct = 90 ° ; parallel to the line connecting the spheres 
(polarization 1) and perpendicular to it (polarization 
2). In calculating the f and g functions, the Lorenz-  
Mie theory was used to determine both the individual 
and agglomerate sphere properties for all size par- 
ameters. Therefore, they are not  based on simplified 
Rayleigh sphere properties. 

Note that two isolated spheres do not represent a 
real system. Our results can be used as a criterion for 
minimal distance between the closest neighbors for 
the assumption of independent interaction with the 
incident radiation. If the closest neighbors do not 
interact mutually, then it is safe to assume that more 
distant particles do not  interact either. 

Figure 3 depicts gabs(x~, 2) and g~Ca(xo, 2) for c = 0, 
3 and 10 (dotted, dashed and solid lines, respectively) 
and two orientations of the incident radiation. In 
agreement with previous estimates, gabs is essentially 1 
(within 5%) for c >~ 3 and all size parameters, while 
for c = 0 it differs from unity as much as 40% for 
xo = 0.2, polarization 1, ~ = 90 °. Therefore, we can 
safely claim that the absorption of radiation is not  
altered by the mutual interaction of the spheres con- 
sidered here when e > 3. 

It is important  to note that our calculations for c 
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Fig. 2. Coordinate system, orientation of  the incident EM wave, and scattering planes used in computations 
of the scattering and absorption properties for a system consisting of two spheres at an arbitrary distance. 

values of 0, 3 and 10 were not chosen arbitrarily. The 
calculations were first performed for several c values 
between 0 and 100 for two-sphere systems, with 
xs = 0.2 and 1.0, and 515 dipoles in each sphere. 
Absorption and scattering cross sections for two 
orthogonal polarization states of the incident beam 

were determined and compared. When the two-sphere 
model cannot be represented as two independent 
spheres, the results based on two polarizations are 
expected to differ. Contrarily, if they are independent 
scatterers, the results should not be affected by the 
polarization of the incident radiation. Indeed, our cal- 
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Fig. 3. Functions gabs and g~" obtained by the discrete dipole approximation for a system consisting of  two 
spheres at distance c (in units of individual spheres radius) equal to 0 (dotted line), 3 (dashed line) and 10 
(solid line). Angle ~ is the angle between the line connecting the spheres and direction of  the Poynting 
vector. When c~ = 90 °, polarization 1 denotes the electric vector parallel to the line connecting the spheres, 

while polarization 2 is the perpendicular polarization. 
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culations revealed that for c ~< 3 the efficiencies were 
different and for higher values they approached each 
other asymptotically. There was virtually no differ- 
ence in efficiencies for the parallel and perpendicular 
polarizations when c was increased from 10 to 100. 
Based on these comparisons only three c values, 0 for 
touching spheres, 10 for independent regime and 3 
for change in functional behavior of efficiencies, were 
considered in later work. 

The expected value for g~" is 0.5 ( =  l /N) in the 
Rayleigh limit when scattering is independent, while 
for a single unified particle g ~  = 1. The right panel 
of the Fig. 3 shows that gs~a does approach the value 
of 0.5 when Xe ~ 1 and c ~> 3. For  smaller Xe and c 
values, gs~ incre~Lses. For  example, if xo ~ 0.2 and 
c < 3, g~" is close to 1, which is the value expected for 
two spheres acting as a single particle. If the particles 
are touching each other, i.e. c = 0, g~a is significantly 
larger than the asymptotic value of 0.5 for all x~, 
meaning indepenclent scattering cannot  represent the 
true physics of the problem at all (however, it is poss- 
ible to use the effective sphere model, or dependent 
scattering regime, if particles are small, i.e. Xe ~< 0.2). 

The criterion for independent scattering depends on 
the size parameter, x~, such that e 1> 3 criterion is valid 
only if xo ~> 0.8 (with maximal allowed difference in 
g~a of 10%, see right panel of Fig. 3). It is clear that 
for a sufficiently ,;mall size parameter, the scattering 
is asymptotically dependent, i.e. the spheres interact 
with the radiation as if they were a single homo- 

geneous particle. This is not surprising since, for 
e ~ Cmin '~ 2.4/Xe ~ 2/Xs, the wavelength of the inci- 
dent radiation exceeds the overall size of the system 
and the incident EM wave cannot  distinguish the 
structure of the system. 

Figure 4 shows phase function, q~(0), averaged over 
both polarizations, for x~ = 0.2 and two orientations 
of the incident EM wave. For  a = 90 °, ~(0) is pre- 
sented in the plane which contains both spheres 
(~ = 0 °, solid line) or in the perpendicular plane 
(~O = 90 °, dotted line). For  a = 0 °, the system is axially 
symmetric and all scattering planes are equivalent. As 
a comparison, we plot ~(0) for a single sphere of the 
same size parameter determined from the Lorenz-Mie 
theory (dashed line). 

Dependent scattering is related to both the distance 
between the spheres, c, and the orientation of the 
axis connecting the spheres with respect to incident 
radiation. 

For  c = 0 and a = 0 °, the spheres are oriented back- 
to-back and they show slightly more (53%) forward 
scattering (0 < 90 °) at the expense of the backward 
one (0 > 90°). This deviation increases with c and, 
for c = 10, 90% of the incident radiation is scattered 
forward. When c = 100, the peaks of wiggles caused 
by interference effects become profound and oscillate 
around the phase function for a single sphere. 
Although forward and backward scattered radiation 
are equal, more radiation is scattered sideway 
(45 ° < 0 < 135 °) than in the single sphere case. The 
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observed trend shows that, for even greater c, @(0) 
smoothed over 0 would fall onto @(0) for a single 
sphere. Such behavior is indeed expected, since this is 
an analogous situation to the smoothing of a diffrac- 
tion pattern when the angular resolution is not 
sufficient and/or the slit spacing is too large. 

For  ~ = 90 ° (right panel of Fig. 4), @(0) for two 
spheres is symmetric with respect to 0 = 90 ° but  shows 
differences in side scattering compared to a single 
sphere, depending on ~9-angle. It can be assumed, since 
deviations from the @(0) for a single sphere are not 
large in either of the three cases, that, even for c = 0, 
the angular distribution of the scattered radiation 
resembles that for a single sphere. As c increases, @(0) 
for ~ = 90 ° approaches @(0) for a single sphere. There 
are no interference effects for this orientation since the 
scattering plane for ~ = 90 ° is the plane of symmetry 
and all points in the plane are at the same distance 
from both spheres. Interference analogous to the case 

= 0 ° can be seen for c = 100 and ~ = 0 ~' at ~ = 90 °. 
Since in real systems there are many spheres with 

random relative orientations, deviations in phase 
function would be hard to observe for large c values. 
It can be expected, however, that as the spheres 
approach each other we would see changes in forward, 
side and backward scattering. 

4.2. Clusters of N spheres 
Effects of clustering were investigated for two types 

of systems consisting of N spheres (N ~< 12) : aligned 
spheres and closely packed agglomerates (e.g. tetra- 

hedron for N = 4, body centered tetrahedron for 
N = 5, body centered cube for N = 9, a cube with two 
spheres attached at two opposite sides for N = 10, 
etc.). Since efficiencies and the scattering pattern 
depend on polarization of the incident light and orien- 
tation of the system, all results are averaged over these 
parameters. 

If agglomerates can be approximated as single 
effective spheres, 9s~'(xe, N) and gabs(xe, N) are close 
to unity, whilef~"(x~, N) andf"bs(xs, N) should show 
the behavior depicted in the left panels of Fig. 1. 
Contrarily, if all N particles interact independently 
with the incident radiation,f=a(Xs, N) andf 'bs(x, ,  N) 
are unity and 9sC'(xo, N) and gabS(Xe, N) follow the 
behavior depicted in the right panels of Fig. 1. 

Results for 9(x~, N) andf(x~, N) are shown in Fig. 
5. Solid lines represent compact systems while dashed 
lines correspond to linear systems with number  of 
constituent spheres, N, as listed in the inset. The 
agglomerate calculations could not be carried out 
beyond xs ~ 1 due to the computational difficulties. 

The behavior o f f  ~bs and f~"  for agglomerates, as 
depicted in Fig. 5, is almost identical to that o f f  ~b~ 
and f~a shown in Fig. 1 for spherical particles. Two 
upper panels f o r f  ~bs and 9 "bS show that absorption of 
the incident radiation is not affected much by the 
mutual  interaction of the constituent particles, nor by 
the deviations from the spherical shape (within 20% 
variation) for x¢ ~< 1.0 [or corresponding x~ as a func- 
tion of N, see equations (2) and (7)]. However, for 
Xe > 1.0, gabS(Xe, N) increases with x~, an effect pro- 
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portional to N an6 more profound for linear agglom- 
erates. For  x~ >/ 1, such behavior is indeed expected, 
as can be seen from the gab~ profiles given in Fig. 1. It 
is worth noting that the asymptotic limit gab~ = 1 is 
not valid here, as x: is large for reliable use of Rayleigh 
regime values. Inslead, Fig. 1 should be considered. 

There are larger differences between the scattering 
behavior of independent scatterers and modeled 
agglomerates. The lower panels of the Fig. 5 show 
that, if Xe ~< 0.2, scattering is asymptotically depen- 
dent (g~a ~ 1,f~a ~ N) and the single unified particle 
model works well. 

Although minor differences exist for large N 
between the two types of the agglomerates, their scat- 
tering behavior is qualitatively the same. In agreement 
with previous studies, results presented in Fig. 5 show 
that all agglomerates can be approximated within 
10% by the model of an effective sphere when x~ ~< 0.2. 
As the size parameter increases, the error introduced 
by the approximation of effective spheres also 
increases, because the wavelength of the incident radi- 
ation begins to "see" the structure, i.e. at this range 
gSCa deviates from unity. If the spheres were beginning 
to scatter independently, then the corresponding gSCa 

function should approach the profiles depicted in the 
lower right panel of Fig. 1 (for independent scattering 
in the Rayleigh limit g~¢a = l/N). With even further 
increase of xo beyond 1, g~°a(x~, N) increases too, and 
becomes almost identical to the value at x¢ = 2 for a 
system of N independent spheres (lower right panel of 
Fig. 1). At x~ values beyond 2, g~Ca for independent 
scatterers approach constant, N dependent, values. 
The agglomerates are likely to approach this limit 
too, but we cannot determine it from the DDA 
calculations. 

The dependent effects never disappear from 
agglomerates as depicted in the lower, right panel of 
the Fig. 5. This was already shown in the analysis 
of the two spheres system where, for c = 0 (as in 
agglomerates), the scattering is never independent. 
Anyway, for Xe ~ 2 the difference between g~a cal- 
culated for agglomerates and g~a for N independent 
spheres is 10-20%. Thus, for this x~ value, model of 
N independent spheres can be used to predict radiative 
properties of agglomerates. In a region where neither 
of the two models work, 0.2 ~< x~ ~< 2, we can assume 
that the true values of radiative properties are some- 
where between the limits given by these models. In 
this region, the models disagree by about a factor of 
2 for scattering. The true difference depends on x~, 
shape of the agglomerate, number of the constituent 
spheres and, presu~aaably, the index of refraction. 

4.3. Identification af the agglomeration process 
The results from Fig. 5 can also be used to trace the 

process of agglomeration of N individual particles into 
an agglomerated particle. As N particles agglomerate, 
the particle number density, V,, decreases. This 
change is reflected in the macroscopic radiative 
properties, x and a. In order to investigate the effects 

of agglomeration only on the radiative properties, the 
effects of changes in V, must be excluded. A con- 
venient measurable quantity to trace the agglom- 
eration process and which does not depend on V, is 
the ratio a/x : 

tr 09 C sca Q]ca(xe) gSCa(Xe, N) 

/~ l - - o )  C abs Q~bS(xe)gabs(xe, N) 

O]C"(xs) f~C"(xs, N) 
(21) 

Q~bS(xs) fabs(xs, N) 

where co is the single scattering albedo. Note that the 
two relations given in equation (21) are equivalent, 
since the f and g functions are not independent [see 
equation (9)]. If we assume that, before the agglom- 
eration takes place, all N particles are independent, 
than the ratio ? will be different after the agglom- 
eration. For xe ~< 0.2, 7 will increase proportionally to 
N, and ;7 = ~agg/Tind ~ N where ~agg and yi.~ stand for 7 
after and before the agglomeration takes place, respec- 
tively. This behavior for small particles was also 
observed by Ku and Shim [7]. 

If the individual particles cannot be considered 
independent scatterers before the agglomeration (if 
the distance between the closest neighbors is not 
greater than 2xs, see Section 4.1), we can still expect 
some increase in ~7 as an indication of the ongoing 
agglomeration process. The expected ratio yagg/yind 
when condition xo ~< 0.2 is not met is shown in Fig. 6 
as a function of x~ and x¢--note that 

V f~a(x~'N)l agg since ,~,[-fsCa(Xs N) 7 i"d = 1. 
;7 = [_fabS(xs, N)J [_f (x~,N)J 

As evident from the right panel, ;7 ~ N is correct 
within 10-20% for x¢ < 0.5. Even when x, ~ 1.5 there 
is a clear increase in ;7. Thus, increase of ;7 can be 
considered as the sign of the agglomeration process. 
Furthermore, ifth(2) is available and once the agglom- 
eration is observed, multi-wavelength measurements 
can provide an estimate of xs and N by identifying the 
steep decrease in 7agg/7 ind, shown in the left panel of 
Fig. 6. Hence, the agglomeration process can be traced 
and, as well, size and number of agglomerated 
particles can be estimated. However, the structure of 
agglomerates cannot be determined by measurements 
of ;7, since ;7 does not appear to be dependent on the 
agglomerates' shape. 

An insight into the structure of the agglomerated 
particles can be obtained from the phase function. 
Figure 7 shows ~(0) for agglomerates consisting of 3, 
7 and 12 spheres and various Xe as marked. We dis- 
play the phase function normalized by its value at 
0 = 0 ° because it is easier to distinguish the results 
for different xo values. 

Compact agglomerates scatter more radiation for- 
wards than linear agglomerates do, with the differ- 
ences proportional to the number of agglomerated 
particles (77% for compact and 65% for linear 
agglomerates when N = 12). The shape of the phase 
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as a function of xs and xe..~agg and ]jind stand for ,/= a/x after and before the 
agglomeration takes place, respectively. 

function at angles beyond 150 ° can also be used to 
determine xo, if all agglomerates are similar. Thus, by 
simultaneous measurements of the ratio ~/x and the 
phase function q~(0), both the number of agglom- 
erated particles and the structure of the formed 
agglomerates can be determined, at least qualitatively. 

We find that an additional difference in radiative 
behavior of the two types of agglomerates can be 
seen in measurements of the depolarization. While 
compact agglomerates do not depolarize incident 

radiation (< 1%), linear systems depolarize about 
10% of the back-scattered (0 > 90 °) radiation, inde- 
pendently of the number of agglomerated particles. 

We have also investigated the behavior of agglom- 
erates regarding the polarization. We find that pol- 
arization of the scattered radiation is very small and 
basically the same for both types of the agglomerates. 
Thus, polarization measurements are not expected to 
be a good tracer of the agglomeration process and 
agglomerates morphology. 
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Structures of  the agglomerates used in this work 
represent limiting c, ases. It is likely that real agglom- 
erates will be different and somewhere between the 
structures considered. Also, the number of  spheres 
considered in each agglomerate was limited because 
of  the computat ional  difficulties. However,  the results 
indicate that N = 12 is not  far from asymptotic limit 
for the complex index of  refraction used. The presence 
of  more particles would not alter our discussion of  
dependent effects. 

changes may not be easy to capture. A more detailed 
study of  this possibility is already underway. 
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5. CONCLUSIONS 

Although in most radiation heat transfer appli- 
cations independent scattering is a valid assumption, 
for some scattering media (e.g. agglomerates, mic- 
rosphere insulations) dependent scattering must be 
taken into account. Also, for accurate interpretation 
of  light extinction/scattering experiments to under- 
stand, for example, soot formation and coagulation 
processes, the dependent scattering regime needs to be 
identified clearly. Analysis based on a discrete dipole 
approximation shows that, for a system consisting of  
two spheres, absorption of  the incident radiation is 
essentially independent when the distance between the 
spheres, d, is larger than three times the radius a of  a 
single sphere. An analogous criterion for independent 
scattering depends on the single particle size 
parameter, x~, and normalized distance between the 
particles, c. It is approximately given as c >/2/  
xs ~ 2.4/Xe. Hence, there is always a sufficiently small 
xs which allows the use of  an effective sphere approxi- 
mation (which is a form of dependent scattering). The 
limit for the independent/dependent regime can also 
be expressed as d >1 2In. 

Results averaged over orientations of  the particles 
and polarizations of  the incident radiation show that 
arbitrarily shaped agglomerates consisting of  N indi- 
vidual spheres can be approximated as an effective 
sphere if xe ~< 0.2. For  Xe ~ 2, agglomerates give the 
same scattering cross-sections as N independent par- 
ticles. In the interrnediate region where agglomerates 
cannot be approximated by either of  these two models, 
model predictions differ by about  a factor of  two for 
N ~< 12 and index of  refraction used in this work. It 
can be assumed tk~at results obtained in these two 
limiting cases bracket the true radiative properties of  
the agglomerates for 0.2 ~< x~ ~< 2. In this range, the 
use of  agglomerate models is recommended. 

Analysis of  the calculated optical properties of  
agglomerates show that the agglomeration process of  
N individual spheres into a linear or compact  agglom- 
erate can be identified. The agglomeration process can 
be followed, even if the changes in the overall number 
density are not  known. Simultaneous measurements 
of  the ratio a/K and the phase function can be used to 
determine the number of  the agglomerated particles, 
their size and the structure of  the formed agglomerate. 
In a hostile flame environment, however, these 
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